
Programming Environments

Presenter: Steve Baskauf
steve.baskauf@vanderbilt.edu

CodeGraf landing page

• vanderbi.lt/codegraf

What is an environment?

Coding environment

• The definition of "environment" is a bit murky
• We can consider an environment to include:
• the value of defined variables
• functions available to be used in our code
• knowledge about position in file directory structure and other computer-wide

parameters

vanderbi.lt/codegraf

Accessing via the shell

• Python example
• R example

Integrated development
environment (IDE)

What is an integrated development
environment (IDE)?
• An IDE is a graphical user interface (GUI) for developing code
• An IDE includes:
• a code editor
• a shell

• An IDE might include:
• tools for examining the environment
• formatting help and syntax checking
• mechanisms for debugging code
• a package manager

Thonny example

• Thonny is a simple Python IDE

Spyder IDE for Python

RStudio IDE for R

Literate programming
with Jupyter notebooks

Literate programming

• Programming paradigm for making code understandable to humans
• Mix text, images, links with code.
• Implementable in a primitive fashion with comments (#)
• Implementable in a robust way with Jupyter notebooks and R

Markdown

Example: Jupyter notebooks

• Formerly known as "iPython notebooks" (.ipynb file extension)
• Now usable with Python, R, and other programming languages
• Runnable in a browser when connected to a server
• Viewable in GitHub (but not runnable)

Functions

Functions

• A function defines a block of code.
• We pass arguments into functions:
• functionName(argument1, argument2, ...)

• It’s good to name functions by what they do.
Example:
my_latte = make_latte(beans, milk, water)

• Functions can be:
• built-in
• defined by you in your code
• defined by somebody else in a module

Image: Nykamp DQ, “Function machine f.” From Math Insight. http://mathinsight.org/image/function_machine_f CC BY-NC-SA

argument

returned
value

parameter

Using functions

• Use a function whenever code needs to be repeated more than once.
• It isn't necessary to understand how a function works, just:
• understand what needs to go in (arguments), if anything
• understand what to expect will come out (return value), if anything

• Functions leverage the power of open source coding
• We can use the code of others
• We can make our code available to others.

• Functions keep the language lean by importing some code only when
its needed

Function example

• We have seen built-in functions like input() and print().
• User-defined example in script: reverse_names()

Libraries

Importing functions

• Reusable code stored in a separate file
• Code not available in environment unless imported
• Some functions are part of the language's standard library and can be

imported with no additional work
• Some functions aren't included in the standard library
• must be downloaded as a package
• must be installed before they are used

• Platforms (CLI or GUI) usually have a package manager to help

Organization of imported functions
• Functions can be organized in a hierarchical way
• In Python:

• related functions are grouped in modules
• related modules are grouped in packages

Import example

• In Python:
• math module
• datetime package

Package managers

What are package managers?

• Package managers retrieve packages from well-known repositories
• They keep track of where the extracted libraries are stored in the

computer
• They make the storage information available to the software

environment so functions can be located.
• If one package has a dependency on another package, the package

manager can automatically retrieve the other package.

How do you access a package manager?

• Python CLI package managers check the Python Package Index (PyPI):
• PIP (Preferred Installer Program)
• Conda (Anaconda package manager)

• R packages managed centrally through Comprehensive R Archive
Network (CRAN) and the built-in install.packages() function
• Package managers may be built into IDEs.

Separation of environments

• You can keep environments separate if one installed library conflicts
with another (virtual environments in Python)
• Installing a package in one application (e.g. Thonny) won't necessarily

make it available in another (e.g. Spyder).

Access to digital collections 24/7

Skype consultations with your
subject librarian

Ask a Librarian: an easy way to
submit a question via email

Live chat available from the
Library home page

Remote
Support for
Teaching and
Research
Needs

NEED HELP? ASK A LIBRARIAN!
https://www.library.vanderbilt.edu/ask-librarian.php

https://nam04.safelinks.protection.outlook.com/%3Furl=https%253A%252F%252Fwww.library.vanderbilt.edu%252Fask-librarian.php&data=02%257C01%257Cnancy.a.dwyer%2540Vanderbilt.Edu%257C6789f0eeec794b439c9c08d7ccfd0fd8%257Cba5a7f39e3be4ab3b45067fa80faecad%257C0%257C0%257C637203259579717740&sdata=D%252F73iajnBXm8CBRwpFU1Rtvvoc7BZFEW0RdUdjvPovE%253D&reserved=0

