
Conditional execution

Presenter: Steve Baskauf
steve.baskauf@vanderbilt.edu

CodeGraf landing page

• vanderbi.lt/codegraf

Procedural vs. vectorized paradigm

Python
input

processing logic

building and manipulating
data structures

output

data structure

visualization

transformation

analysis

R

beginner

beginner

advanced

advanced

looping

branching

Procedural vs. vectorized programming

if … else … statements

Conditional execution

• The if statement evaluates a boolean
• If True, the following indented code block is

executed. (Don't forget colon!).
• Notice how I named the boolean variable to make

the code readable.

is_friday = False

if is_friday:
print('Woopie! ')
print('TGIF !')

Conditional execution

• The comparison operator (==) is different from the
assignment operator (=) and produces a boolean.
• The indented print statement is only executed if

the condition is True.
• The non-indented print statement is always

executed.
• Indentation is super important in Python!

name = input('What is the name of the character? ')
is_micky = name == 'Mickey Mouse'
print(name)
print(is_micky)

if is_micky:
print('You are a Disney character')

print('That is all!')

else and elif

• else defines the default code block if no condition is satisfied.
• elif combines else and if; use to check additional conditions.
• Python does NOT have the switch-case structure common in

other languages.

Note:

• Notice how indentation is used to control which code blocks are
conditionally executed and which ones are always executed.
• Notice that the program is really dumb. It only does what you say

and doesn't really have any idea what a Disney character is.

Flags

What are flags for?

• A flag is a variable that we use to keep track of the state of some
condition in our code.
• Flags often contain boolean True or False values.
• Clever naming allows us to write readable code when testing a

condition:

if door_open:
result = close(door)

Error trapping

try…except… for error trapping

try:
code that might throw an error goes here

except:
code to be executed if there's an error goes here

here's where the code execution continues

• Error trapping handles problems gracefully instead of
having the script crash.
• An error is called an exception.
• Code blocks are identified by indentation (as usual)
• Colons required after try and except

try…except… for error trapping
• Example:

from math import pi
typed_in = input('What is the diameter of your circle? ')

try:
diameter = float(typed_in)
print('The circumference is:', diameter * pi)

except:
print("Sorry, you didn't enter a number.")

• It's a good idea to error trap any error that can be
predicted to happen sometime (e.g. file not found)

