R Basics: Vectors and packages

Presenter: Steve Baskauf
steve.baskauf@vanderbilt.edu

DiSE DIGITAL SCHOLARSHIP

Jean & Alexander Heard

IS [[BRARIES

CodeGraf landing page

 vanderbi.lt/codegraf

R objects

Jean & Alexander Heard

IS [[BRARIES

DiSE DIGITAL SCHOLARSHIP

Common types of data

e character, e.g. "Fred" or "l@#ts23" (in quotes)
* numeric, e.g. 15 or 6.02 (no quotes)
* logical, TRUE or FALSE (all caps, no quotes)

Object name recommendations

* An object in R is a specialized data structure.
* We can use the term variable to refer to named objects

* R doesn't know what a name "means”. A meaningful name helps
human readers of the code.

* Be descriptive (what the object is or does)

* snake case (underscores) is commonly used:
* ordinary relational processes

e camelCase is sometimes used:
* bookList,alphabetizeParticipants

Assigning a value to an object

* You can assign a value to an object using <- (similar to a left arrow)

e Examples:

name <- "Steve" (creating a character object)
my number <- 6.02 (creatinga numeric object)

e Using the equals sign (=) is allowed, but not recommended.
* alt-minus is an RStudio shortcut to generate <-

Displaying the value of an object

* Thereis a "print" command in R, but it is not commonly used unless
writing to a file.

* Entering the name of an object (or expression) in the console
evaluates and displays its value

Function review

Jean & Alexander Heard

IS [[BRARIES

DiSE DIGITAL SCHOLARSHIP

Using a function

* We don't have to know anything about the code that makes a
function work. We just need to know:

* What the function does
* What arguments to put into it
* What the function will output

* Examples:
sgrt (2) (evaluate and display)
x <- sqgrt(3) (evaluate and assign to an object)

Sources of functions

* Functions can be:
 Built-in to R and always available (examples in next section)
* Imported by loading a package (more on this later in this lesson)
* Defined as part of the code in the script (not covered in this module)

Loading an R script

Jean & Alexander Heard

IS [[BRARIES

DiSE DIGITAL SCHOLARSHIP

Ways to load an R script from GitHub

* Easy:
1. Go to the script web page at GitHub.
2. Left click on the Raw button.
3. Copy all the text.
4. Paste into a new RStudio editor window
5. Save if desired.

* Harder, but generic:
1. Go to the script web page at GitHub.
Right click on the Raw button and select "Save Link As..."

2
3. Save the file somewhere you can find it.
4

In RStudio, select "Open File..." from the File menu and navigate to the file
you saved, or click on the open file icon.

5. Select the file and click Open.

Vectors

Jean & Alexander Heard

IS [[BRARIES

DiSE DIGITAL SCHOLARSHIP

Vectors are king in R

vector named animal

llfrogll llspiderll llwormll llbeell

animal[1l] animal[2] animal[3] animal [4]

e A vector is the most common kind of data structure
in R.

* Vectors contain a sequence of the same type of data.

Creating vectors

* We commonly use the combine function to make vectors:
number vector <- c(1, 3, 6, 10, 15)
animal <- c("frog", "spider", "worm", "bee")

* We can also generate a sequence of numbers:

number range <- 3:9
count down <- 10:0
go _negative <- 5:-3

* The generated sequence is just another vector!

e (Python users: note the range includes the final value)

Knowing what's going on with a vector

e display it in console
e examine its value in the environment data pane

* examine its properties:
length (animal) (how many items)
mode (animal) (type of data in vector)

Referring to parts of vectors

e Referencing a single item:
animal[3] (displays the third item)
animal[2] <- "arachnid" (assigns "arachnid" to the 2" item)

* Referencing a range of items (subvector):
animal[2:4] (therange 2:4is actually a vector itself)

e (Python users: R vectors are "1 based"; the first item is numbered 1, not 0. Also,
the range includes the final value.)

Single item objects are vectors, too.

 Surprisingly, a single data item assighed to an
object is also a vector. We can see this if we ask its
length as if it were a vector:
an _item <- "some character string"
length (an_item)

* We can reference the single item using vector
notation:
an _item[1]

Vectorized computing

Jean & Alexander Heard

IS [[BRARIES

DiSE DIGITAL SCHOLARSHIP

Vectorized computing

* Vectorized computing is a programming paradigm
used by R and Python Pandas.

* When operations (math or function) are performed on

vectors, they generally are performed on all items in
the vectors without having to iterate through each
item in the vector.

* When an operation is done involving two vectors, the
operation is carried out sequentially on pairwise items
in the two vectors.

* The result is generally a vector with the same length.

Operations on vectors

* Many functions work equally well for a single item
or a multi-item vector (since they are both vectors):

number <- 2
sqgrt (number)

number vector <- c(l1, 3, 6, 10, 15)

sqgrt (number vector)
number vector * 3

10|=——P>

15—

number_vector times 3

1{=——>

3 |——l

6|

18

30

45

Operations on vectors

* Example of two-vector operation:

> a <- c(10, 30, 100)

> b <- c(5, 10, 20)

> c <- a/b

> C

[1] 2 3 5
10 5
30 10

100 20

Using packages

Jean & Alexander Heard

IS [[BRARIES

DiSE DIGITAL SCHOLARSHIP

Loading packages

* Some functions that are not built-in are part of packages that must be
loaded.

* Example: loading by command

 Example: loading by GUI

* Example: including 1ibrary () in a script

Installing packages

* A package may need to be installed the first time you use it.
* Installing causes download from CRAN
* If using Anaconda, installing often not necessary

* Example: command line
* Example: GUI

Dependencies

* Some packages need code from other packages (dependencies) to
operate

* Installing a package with dependencies may also result in the
dependences being installed as well.

* Some large umbrella packages (like tidyverse) may take a long
time to install

