
Lists, data frames, and tibbles

Presenter: Steve Baskauf
steve.baskauf@vanderbilt.edu

CodeGraf landing page

• vanderbi.lt/codegraf

Lists

Lists

• Like vectors, lists are one-dimensional data
structures.
• However, lists can be heterogeneous (contain more

than one kind of data object)
• It is typical to give names to values of a list.

Creating a list

• Lists are created using the list() function:
thing <- list(fruit_kind="apple",

euler=2.71828,

vector_data=animal,

curse="!@#$%")

• This list contains character strings, a number, and a vector.
• Values can be assigned names as they are added to the list

Viewing contents of a list

• You can see what's in a list by clicking on its name
in the workspace summary in the Environment
pane

Referencing list items

• List items can be referenced by:
• position using double square brackets and the index number
thing[[2]]

• name using a dollar sign and the name string
thing$curse

Differences between vectors and lists

• vectors are homogeneous, lists can contain different types of items
• list items are commonly named, vector items can be named but

usually aren't
• vector items are usually referenced by their index number (position),

list items are commonly reference by their name using the $ notation

Data frames

Data frames

• Data frames are essentially tables
• The column values are like vectors
• The set of columns is like a list

Making a data frame from vectors

• First make the named vectors
group <- c("reptile", "arachnid", "annelid",
"insect") # vector of strings

animal <- c("lizard", "spider", "worm", "bee")

number_legs <- c(4,8,0,6) # vector of numbers

• Then put the vectors into a data frame
organism_info <- data.frame(group, animal,
number_legs)

• The vector names will be used for the column names

Viewing contents of a data frame

• Click on the name of the data frame in the
Environment pane
• The contents will be displayed as a table

Referring to parts of a data frame

• Since the columns are like list items, we can refer to them by name:
organism_info$animal
• Individual cells can be referenced by:
• row and column
organism_info[2,1]
• column name and position in column
organism_info$animal[4]

Tibbles

What are tibbles?

• Tibbles are a special kind of data frame
• They have all of the characteristics of data frames, but have fewer

restrictions about their structure
• They are a key component of the tidyverse, a paradigm developed by

Hadley Wickham, developer of RStudio. The tidyverse is a collection
of related R packages that are commonly used in data science.

How are tibbles different from regular data frames?

• The rules for tibble column names are relaxed. For example, spaces
can be included.
• Character data are not automatically imported into data frames as
factors. Factors are important for experimental analysis, but in many
other circumstances we don't care about them.
• Viewing tibbles provides more information that data frames.
• In many cases it does not matter whether your table is a generic data

frame or a tibble. However, for statistical analysis of experiments, the
distinction may be important.

Loading data frames and tibbles from files

Tabular data in delimited files

• Delimited files are text files where values are separated by some text
character and lines are separated by newline characters (i.e. "hard
returns").
• Most common type of delimited file: CSV (comma separated values)
• Also used: TSV (tab separated values)
• Delimited files are much simpler than Excel files and are commonly

used for archiving data.
• CSV files can be made by exporting from Excel

Reading delimited files into data frames
• There are several ways to read data from CSV files into R:
• by a file path (platform-dependent)
my_data_frame <- read.csv("~/test.csv") (Mac)
my_data_frame <- read.csv("c:\temp\test.csv") (Windows)

• by a file-choosing dialog
my_data_frame <- read.csv(file.choose())

• by a URL
my_data_frame <-
read.csv("https://gist.githubusercontent.com/baskaufs/1a7
a995c1b25d6e88b45/raw/4bb17ccc5c1e62c27627833a4f25380f27d
30b35/t-test.csv")

Controlling the import process

• You can specify if the file has a header row (labels) using the header
key (default value is TRUE)
• You can specify the separator if it's different from comma using the
sep key (default value is comma)
• \t is the escaped value for a tab character
• Example:
nls_ds1 <- read.csv(file.choose(),

header = TRUE,

sep = "\t")

Examining a data frame

• head() shows the first 6 rows
• tail() shows the last 6 rows
• names() returns the column names
• str() describes the structure of the data frame with information

about each column

Other import options

• Excel spreadsheets (openxlsx package)
• read.xlsx()

• Reading files as tibbles (readr package)
• read_csv()
• Tab separated values: read_tsv()

Basic operations on data frames

Operating on columns of a data frame

• Since data frame columns are essentially vectors, vectorized
operations can be performed on them.
• Column properties:
• length(df$column)
• mode(df$column)

• The output of operations on data frame columns are generally a
vector whose length is the number of rows in a column.
• Vectorized operations:
• one-vector df$column * 7
• two-vector df$col1 + df$col2

Vector recycling

• If an operation requires two vectors to be the same length, R
automatically repeats the shorter one until it is long enough to
complete the operation.
• Example:

a <- c(1, 2)
b <- c(10, 15, 17, 5, 1)
a + b

a will be extended to a length of 5: 1, 2, 1, 2, 1
resulting in: 11 17 18 7 2

Mixing operations on data frames and vectors

• A vector and a data frame column can part of two-vector operations
number_wings <- c(0, 0, 0, 4)
number_appendages <- number_wings + organism_info$number_legs

• The vector may be shorter than the column and be recycled
weekdays <- c(0, 1, 1, 1, 1, 1, 0)
work_week_calls <- calendar$number_calls * weekdays

