Lists, data frames, and tibbles

Presenter: Steve Baskauf
steve.baskauf@vanderbilt.edu

DiSE DIGITAL SCHOLARSHIP

Jean & Alexander Heard

IS [[BRARIES

CodeGraf landing page

 vanderbi.lt/codegraf

Lists

Jean & Alexander Heard

IS [[BRARIES

DiSE DIGITAL SCHOLARSHIP

Lists

list named thing

name | fruitKind euler vectorData curse
value "apple" 2.71828 animal "I@#S%"
reference value by position thing[[1]] thing[[2]] thing[[3]] thing[[4]]

reference value by name thing$fruitKind thingS$euler thing$vectorData thing$curse

* Like vectors, lists are one-dimensional data
structures.

* However, lists can be heterogeneous (contain more
than one kind of data object)

* It is typical to give names to values of a list.

Creating a list

e Lists are created using the 1ist () function:
thing <- list(fruit kind="apple",
euler=2.71828,
vector data=animal,
curse="1Q#$3%")

* This list contains character strings, a number, and a vector.
* Values can be assigned names as they are added to the list

Viewing contents of a list

o + > .

~ Addins ~ K Project: (None) ~
@ | Untitled1 thing — =1 Environment History Connections — =1
Show Attributes - ~ Import Dataset ~ & List ~
Name Type Value "% Global Environment ~
@ thing list [4] List of length 4 Data

fruitKind character [1] ‘apple’ thing List of 4
euler double [1] 2.71828 Values
vectorData character (4] ' 'spider' 'worm' 'bee’ animal chr [1:4) "frog” "spider” "worm" "bee”
curse character [1] '@#$

the list shows up in the workspace summary

clicking on it brings up details in the upper left pane

Files Plots Packages Help Viewer

-

= Export ~

* You can see what's in a list by clicking on its name

in the workspace summary in the Environment
pane

Referencing list items

* List items can be referenced by:

 position using double square brackets and the index number
thing[[2]]

* name using a dollar sign and the name string
thing$curse

Differences between vectors and lists

e vectors are homogeneous, lists can contain different types of items

* list items are commonly named, vector items can be named but
usually aren't

 vector items are usually referenced by their index number (position),
list items are commonly reference by their name using the S notation

DEICRICINER

Jean & Alexander Heard

IS [[BRARIES

DiSE DIGITAL SCHOLARSHIP

Data frames

data frame named organism info column name

group numberLegs

"reptile” "lizard" 4

"arachnid" "spider" 8

"afinelid" "worm" 0

/nsect” "bee” 6 \
organism info[2,1] vector organism info[4, 3]

organism infoSanimal [4]

* The column values are like vectors
* The set of columns is like a list

Making a data frame from vectors

* First make the named vectors

group <- c("reptile", "arachnid", "annelid",
"insect") # vector of strings

animal <- c("lizard", "spider", "worm", "bee")
number legs <- c(4,8,0,6) # vector of numbers
* Then put the vectors into a data frame

organism info <- data.frame (group, animal,
number legs)

* The vector names will be used for the column names

Viewing contents of a data frame

group
reptile
arachnid
annelid

insect

RStudio

~ Addins ~
organism_info [] Environment History Connections
Filter i ~ Import Dataset ~ y
animal number_legs 3 Global Environment ~
lizard 4 Data
spider 8 organism_info 4 obs. of 3 variables
worm 0 Vdlues
bee " animal chr [1:4] "lizard" "spider" "worm" "bee"
slick on the data frame name herd group chr [1:4] "reptile" "arachnid" "annelid" "insect"
‘K\\\foseeitmspbyedasatabm number_legs num [1:4] 4 8 @ 6

here

* Click on the name of the data frame in the
Environment pane

* The contents will be displayed as a table

o)

Referring to parts of a data frame

* Since the columns are like list items, we can refer to them by name:
organism infoS$animal
* Individual cells can be referenced by:

* row and column

organism info[2,1]

e column nam_e and position in column

organism infoSanimal [4]

Tibbles

Jean & Alexander Heard

IS [[BRARIES

DiSE DIGITAL SCHOLARSHIP

What are tibbles?

* Tibbles are a special kind of data frame

* They have all of the characteristics of data frames, but have fewer
restrictions about their structure

* They are a key component of the tidyverse, a paradigm developed by
Hadley Wickham, developer of RStudio. The tidyverse is a collection
of related R packages that are commonly used in data science.

How are tibbles different from regular data frames?

* The rules for tibble column names are relaxed. For example, spaces
can be included.

* Character data are not automatically imported into data frames as
factors. Factors are important for experimental analysis, but in many
other circumstances we don't care about them.

* Viewing tibbles provides more information that data frames.

* In many cases it does not matter whether your table is a generic data
frame or a tibble. However, for statistical analysis of experiments, the
distinction may be important.

Loading data frames and tibbles from files

Jean & Alexander Heard

IS [[BRARIES

DiSE DIGITAL SCHOLARSHIP

Tabular data in delimited files

* Delimited files are text files where values are separated by some text
character and lines are separated by newline characters (i.e. "hard
returns").

* Most common type of delimited file: CSV (comma separated values)
* Also used: TSV (tab separated values)

* Delimited files are much simpler than Excel files and are commonly
used for archiving data.

e CSV files can be made by exporting from Excel

Reading delimited files into data frames

* There are several ways to read data from CSV files into R:
* by a file path (platform-dependent)

my data frame <- read.csv("~/test.csv") (Mac)
my data frame <- read.csv("c:\temp\test.csv") (Windows)

* by a file-choosing dialog

my data frame <- read.csv(file.choose())

* by a URL

my data frame <-

read.csv("https://gist.githubusercontent.com/baskaufs/la’

a995c1b25d6e88b45/raw/4bbl7ccc5cle62c27627833a4£f25380£f27d
30b35/t-test.csv")

Controlling the import process

* You can specify if the file has a header row (labels) using the header
key (default value is TRUE)

* You can specify the separator if it's different from comma using the
sep key (default value is comma)

* \ t is the escaped value for a tab character

* Example:

nls dsl <- read.csv(file.choose(),
header = TRUE,
sep = "\t")

Examining a data frame

* head () shows the first 6 rows
e tail () shows the last 6 rows
e names () returns the column names

e str () describes the structure of the data frame with information
about each column

Other import options

 Excel spreadsheets (openxlsx package)
* read.xlsx ()

* Reading files as tibbles (readr package)
* read csv ()
* Tab separated values: read tsv ()

Basic operations on data frames

Jean & Alexander Heard

IS [[BRARIES

DiSE DIGITAL SCHOLARSHIP

Operating on columns of a data frame

* Since data frame columns are essentially vectors, vectorized
operations can be performed on them.

e Column properties:
* length (df$column)
* mode (dfScolumn)

* The output of operations on data frame columns are generally a
vector whose length is the number of rows in a column.

* Vectorized operations:

 one-vector dfScolumn * 7
* two-vector dfScoll + dfS$col2

Vector recycling

* If an operation requires two vectors to be the same length, R
automatically repeats the shorter one until it is long enough to
complete the operation.

* Example:

a <- c(l, 2)

b <- ¢(10, 15, 17, 5, 1)

a + b
a will be extended toa lengthof5:1, 2, 1, 2, 1
resultingin:11 17 18 7 2

Mixing operations on data frames and vectors

e A vector and a data frame column can part of two-vector operations
number wings <- c(0, 0, 0, 4)
number appendages <- number wings + organism info$number legs

* The vector may be shorter than the column and be recycled
weekdays <-¢(0,1, 1,1, 1, 1, 0)
work_week_calls <- calendarSnumber_calls * weekdays

