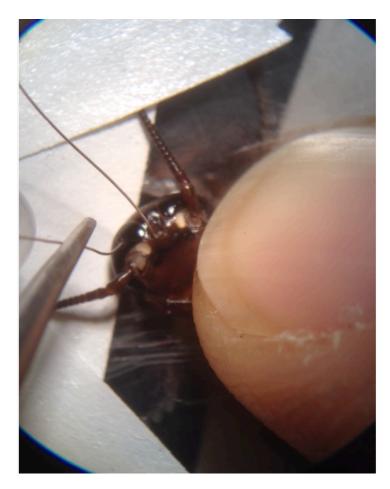
Tidy Data and basic data wrangling

Presenter: Steve Baskauf steve.baskauf@vanderbilt.edu

CodeGraf landing page


vanderbi.lt/codegraf

Options for recording data

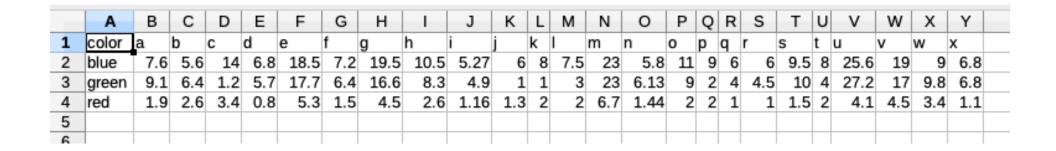
Jean & Alexander Heard LIBRARIES

Cockroach electroretinogram experiment

- See https://youtu.be/aAdnZsggZZw
- Difference in ability to detect colors of light

Experimental design

- two factors:
 - color (red, green, or blue)
 - block (24 individual roach measurements labeled a through x)
- one measured value (response in volts)


How to record in notebook (or Excel)?

Logical method

- columns for color
- rows for roach measured

	Α	В	С	D	
1	block	blue	green	red	
2	a	7.6	9.1	1.9	
3	b	5.6	6.4	2.6	
4	С	14	1.2	3.4	
5	d	6.8	5.7	0.8	
6	е	18.5	17.7	5.3	
7	f	7.2	6.4	1.5	
8	g	19.5	16.6	4.5	
9	h	10.5	8.3	2.6	
10	i	5.27	4.9	1.16	
11	j	6	1	1.3	
12	k	8	1	2	
13	I	7.5	3	2	
14	m	23	23	6.7	
15	n	5.8	6.13	1.44	
16	0	11	9	2	
17	р	9	2	2	
18	q	6	4	1	
19	r	6	4.5	1	
20	s	9.5	10	1.5	
21	t	8	4	2	
22	u	25.6	27.2	4.1	
23	v	19	17	4.5	
24	w	9	9.8	3.4	
25	x	6.8	6.8	1.1	
26					
07					

Another method

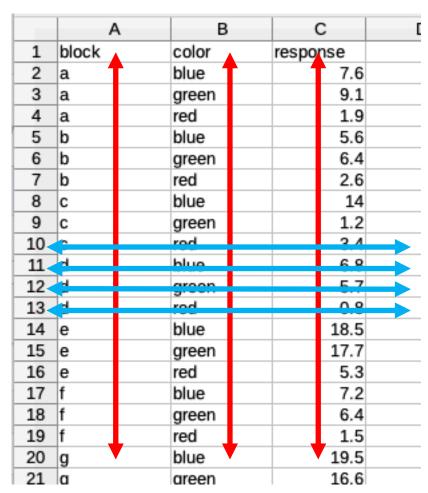
- columns for roach measured
- rows for color

Also logical, although probably less convenient

Tidy Data (tidyr package)

"Tidy data" is a buzzword

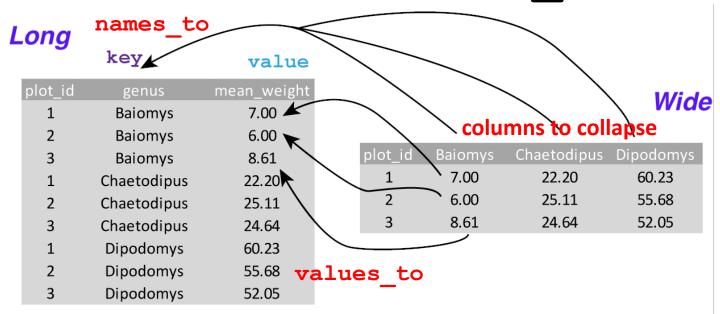
- Made up by Hadley Wickham, R guru.
- Rules:
 - Each variable must have its own column.
 - Each observation must have its own row.
 - Each value must have its own cell.


See https://r4ds.had.co.nz/tidy-data.html

What are the variables in the roach experiment? variables

- block and color are factors (discontinuous independent variables)
- response is a continuous dependent variable

observations


 So block, color, and response should be in separate columns if data are tidy.

Pre-buzzword

- This format has been required by stats software for many years.
- Organizing factors in columns rather than mixing them in rows and columns makes them "grouping variables", since the software can use those columns to group the data in various ways
- "Tidy data" is a handy term for this format, so we'll use it.

"Tidying" with tidyr: pivot_longer()

- "tidy" form = "long", "notebook" form ="wide"
- key = column to form from headers, value = data

Examples with ERG data

Untidying data

- One can use the **pivot_wider()** function to reverse the tidying process.
- Result not good for analysis purposes, but sometimes easier for data entry.

Subsetting tibbles (dplyr package)

dplyr functions

- ✓filter() subsets rows
- ✓ select() subsets columns
- mutate() calculates new columns or changes existing ones

Examples with schools data

Changing tibbles (dplyr package)

Jean & Alexander Heard LIBRARIES

dplyr functions

- filter() subsets rows
- select() subsets columns
- ✓ mutate () calculates new columns or changes existing ones