Introduction to Statistics with R

Presenter: Steve Baskauf steve.baskauf@vanderbilt.edu

Factors and the t-test of means

Presenter: Steve Baskauf steve.baskauf@vanderbilt.edu

CodeGraf landing page

vanderbi.lt/codegraf

Factors and experimental design

Factors

- A factor is a data structure for categorizing discontinuous data.
- Its origin comes from **experimental design** terminology.
- In an experiment, each category into which an experimental trial can fall is called a level.
- Factors are sometimes called grouping variables because they are used to group observations.
- Factors may be required for some statistical tests and visualizations.

Factor example: science fair

water factor	height (cm)
wet	25
wet	21
dry	14
wet	13
dry	10
wet	18

- The water factor has two levels: wet and dry
- The height observations can be grouped by whether the experimental treatment was wet or dry

Factor example: creating factor values

• Create a vector of character strings and a vector of number values:

```
water conditions <- c("wet", "wet", "dry",</pre>
"wet", "dry", "wet")
height <-c(25, 21, 14, 13, 10, 18)
• Convert the strings into a factor
water factor <- factor(water conditions)</pre>
• Display the values of each data structure
water conditions
water factor
height
```

How to tell that a data structure is a factor

```
> water_conditions
[1] "wet" "wet" "dry" "wet" "dry" "wet"
> water_factor
[1] wet wet dry wet dry wet
Levels: dry wet
> height
[1] 25 21 14 13 10 18
>
                                   Connections
              Environment
                          History
                                                                                 📙 🛛 🗃 Import Dataset 👻 📝
                                                                          🗏 List 🖌 🛛 🕑
              📘 Global Environment 🝷
                                                                     Q
             Values
                                  num [1:6] 25 21 14 13 10 18
               height
                                  chr [1:6] "wet" "wet" "dry" "wet" "dry" "wet"
               water_conditions
                                  Factor w/ 2 levels "dry", "wet": 2 2 1 2 1 2
               water_factor
```

- The main clue is that the values of the levels are listed.
- Notice that the levels are actually stored as numbers. The factor level strings are just labels for the numbers.

Data frames and factors

 character strings are automatically turned into factors when data frames are built from individual vectors.

```
group <- c("reptile", "arachnid", "annelid", "insect")
# character strings
number_legs <- c(4,8,0,6) # numbers
organism info <- data.frame(group, number legs)</pre>
```

• This can be good or bad depending on how you want to use the data.

Data frames and factors

- Recall that character strings read from CSV files using read.csv() are automatically turned into factors
- numbers imported from CSV files are imported as number vectors
- This automatic behavior takes place because of the historical orientation of R towards statistics.
- Use **as.character()** to convert from factors to character strings, or read in as a tibble using **read csv()**

t-test of means

t-test of means characteristics

- The independent variable is discontinuous (factor)
- The **dependent variable** is **continuous** (numeric)
- The factor (a.k.a. grouping variable) has only 2 levels.
- We want to know if the two levels of the independent variable have significantly different means for the continuous variable.

t-test of means applications

• This test is great for a controlled manipulative experiment or "randomized controlled trial")

water factor	height (cm)
wet	25
wet	21
dry	14
wet	13
dry	10
wet	18

 Is the mean height for wet (=level of factor) different from the mean for dry?

t-test of means in R

- Need two vectors (or columns from data frame).
- One (independent variable) must be a factor, the other (dependent variable) must be numeric.
- Must be organized as "tidy data" (category data in a single column)
- Format:

t.test(dep_vec ~ ind_vec, var.equal=TRUE)

or

t.test(dep_col ~ ind_col, data=data_frame, var.equal=TRUE)

Review of p-value

Result of Two Sample t-test on heights data

```
data: height by grouping
t = 2.7654, df = 12, p-value = 0.01711
alternative hypothesis: true difference in means
is not equal to 0
95 percent confidence interval:
  1.869768 15.758803
sample estimates:
 mean in group men mean in group women
           179.8714
                                171.0571
```

Sampling from a population

- In the heights data, we have 7 heights for each sex.
- The data represent a **sample** of heights from the populations of men and women (all possible men and all possible women).

mean in group men mean in group women179.8714171.0571

- Possibilities:
 - men and women have the same average height, but by chance our sampling was unrepresentative (null hypothesis)
 - the sampling was representative of the populations and heights of men and women are different (alternative hypothesis)

What is a p-value (P) ?

- What is P?
 - P is the probability that we would see results like this if nothing interesting were going on (variation is random).
 - P = 0.6 (could be like this 60% of the time if random; likely to be random)
 - P = 0.001 (could be like this 0.1% of the time if random; not likely to be random)
- If it's really unlikely that our results would occur when only random things are happening, we think something interesting is going on.
- P is an assessment of the null hypothesis (nothing interesting)
- When P is low, we reject the idea that nothing interesting is going on (the null hypothesis)

Why do we like it when P<0.05 ?

- Hypotheses:
 - things are different (alternate hypothesis)
 - things are the same (null hypothesis)
- Strategy:
 - show that the null hypothesis is wrong
- If P < 0.05, then we assume the null hypothesis is wrong because it's so unlikely.
- If P > 0.05, then either the null hypothesis is correct or our experiment STINKS !
- We probably know what's going on if P < 0.05 but not if P > 0.05

Statistical power

- Power is the ability to show that different things are different (P < 0.05)
- We get more statistical power if there's less variation in the data or a larger sample size.
- We may be able to control variation by experimental conditions
- We should be able to increase the sample size (if we have time and money).
- If not different, increasing power won't reduce P.
- If different, increasing power will make P get smaller.

Power tradeoff

- Too little statistical power:
 - can't show that different things are different
 - Unable to get P > 0.05 when there are differences.
- It seems like more statistical power would always be a good thing, but...
- Too much statistical power
 - tiny unimportant things are shown to be different
 - P< 0.05 for factors with a very small effect.

Assumptions of t-test of means

Testing assumption of t-test of means

- 1. Independence of the two samples (not testable by stats).
- 2. Each group normally distributed.
- 3. Variances of the two groups are the same.

(Typical requirements for **parametric tests**.)

Testing assumption of normality

- Graphical examination:
 - histogram
 - normal quantile plot
- Shapiro-Wilkes test

Testing assumption of equal variances

- Bartlett's test
 - built-in function
 - valid if data are normally distributed