
Python Lesson 2: 
Basics

vanderbi.lt/py

Steve Baskauf



Digital Scholarship and 
Communications Office (DiSC)

• Unit of the Vanderbilt Libraries
• More online at: vanderbi.lt/disc
• Email: disc@vanderbilt.edu

vanderbi.lt/py



Object name recommendations

• Be descriptive (what the object is or does)
• snake_case is specified by PEP 8:
• ordinary_relational_processes

• camelCase is frequently used.  Examples:
• bookList, alphabetizeParticipants (lower 

CC for variables, functions)
• DocumentDescription, PageHeader (upper CC 

for classes)

• Don't ever put spaces in any kind of name, even if 
you can get away with it.

vanderbi.lt/py



Simple object types

• string literals. Enclose in quotes. Examples:
"lol",  'bye bye, birdie', "can't"
special characters with backslash: '\n'

• number literals (no quotes). Examples:
35
0.999
6.02

• boolean (no quotes):
True or False

vanderbi.lt/py



Assignment to a variable

user_name = "smithjr" 
is_door_open = False 
eulers_number = 2.7182818

user_name = last_login_name
sum = number_widgets + 3 

too_many = sum > 10 
student_count = student_count + 1

• The equals sign (=) assigns a value to a variable
• It's like a left arrow: 

• Variables can store many kinds of objects (not just 
simple ones like numbers and strings)

vanderbi.lt/py



Try this…



Functions

• A function defines a block of code.
• We pass arguments into functions:
• functionName(argument1, argument2, ...)

• It’s good to name functions by what they do.  
Example:
my_latte = make_latte(beans, milk, water)

• Functions can be:
• built-in
• defined by you in your code
• defined by somebody else in a module

Image: Nykamp DQ, “Function machine f.” From Math Insight. http://mathinsight.org/image/function_machine_f  CC BY-NC-SA

argument

returned 
value

parameter



Try this…



Defining and calling functions

• Notes:
• The hash (#) character is used for comments
• Variables used for parameters and arguments can differ
• Indented code blocks: standard for Python is 4 spaces
• Don't forget colon before code block!!!
• About white space elsewhere

# here is where the function is defined
def multiplication(first_number, second_number):

answer = first_number * second_number
return answer

# here is where the function is called
num1 = 3
num2 = 5
answer = multiplication(num1,num2)
print(answer)

arguments

4 spaces
standard

parameters



Try this…

• Notes:
• Use a function when you need to repeat a task more 

than once
• Use a function to keep your code in small enough blocks 

that it's easy to understand what's going on (importance 
of naming!)
• Is it better to pile up functions inside of functions 

(compare first and second example)?



Modules (how)
• reusable code stored in a separate file (has .py

extension like other Python programs)
• loaded into script using import statement
• dot notation for indicating a function is from a 

module (don't need the .py extension)
import simple_math

sum = simple_math.addition(num1, num2)

• abbreviating module names:
import simple_math as m

sum = m.addition(num1, num2)



Modules (where)
• some modules are part of the standard library

(part of every Python installation)
• modules NOT in standard library must be loaded 

using a package manager (PIP for command line, 
GUI Tools menu on Thonny)
• Anaconda has most libraries already loaded
• You can make your own modules (but probably 

won't)
• about the file name gotcha!



Packages (what)

• Packages are a high-level organizational tool for 
grouping related modules.
• Hierarchical dot notation:
package.module.function()



Packages (how)
• abbreviating module names:

from functions import simple_math
import functions.simple_string as st

answer = simple_math.subtraction(10, 3)
print(answer)

firstName = 'Donald'
lastName = 'Duck'
combined_string = st.concatenation(firstName, 
lastName)
print(combined_string)

• There are linked DIY instructions if you want to try 
making your own packages and modules



Input function

• Example:
name = input("What's your name? ")

print('Hello ' + name + '! How are you?')

• Content comes in as a string, so conversion is 
required if you want to input numbers.  See 
example.



Conditional execution (Try this)

• The comparison operator (==) is different from the 
assignment operator (=) and produces a boolean.
• The if statement evaluates a boolean
• If True, the following indented code block is 

executed. (Don't forget colon!). Same indent is 
always executed.
• Notice how I named the variable to make the code 

readable.

name = input('What is the name of the character? ')
is_micky = name == 'Mickey Mouse'
print(name)
print(is_micky)

if is_micky:
print('You are a Disney character')

print('That is all!')



else and elif

• else defines the default code block if no condition 
is satisfied.
• elif combines else and if; use to check 

additional conditions.
• Python does NOT have the switch-case

structure common in other languages.



Try this…

• Examine and try if…else… and 
if…elif…else… examples.
• Notice how indentation is used to control which 

code blocks are conditionally executed and which 
ones are always executed.  
• Notice that the program is really dumb.  It only 

does what you say and doesn't really have any idea 
what a Disney character is.


