
Python Lesson 3:
Object Oriented Python

vanderbi.lt/py

Steve Baskauf

Comments

• Single-line comments use the hash (#) character
• comment can start at beginning of line

• comment can follow end of regular code on line

• Pseudo-multiline comment are multiline strings
• delimit using triple single-quotes (''')

• hash method is preferred; editors can apply to many
lines

text = prefix + suffix

'''

print(prefix)

print(suffix)

'''

print('The whole text is: ' + text)

This text is "commented out"

Classes and instances

instance: toyotaPrius instance: ferrari instance: volkswagenBeetle

Class: Car

Classes are abstract
categories of things.
Instances are particular
individuals of a class.
Instantiation is the act of
creating an instance of a
class.

Recall: convention of upper camelCase for classes and lower camelCase for instances.

Defining and instantiating classes

• We are not going to worry about the details of
defining classes.

• Classes can be defined in code we write (below) or
in modules we import.

• Create class instances by writing the class name.

define Duck class

class Duck:

def __init__(self):

code here

more code

instantiate Duck instances

donald = Duck()

daffy = Duck()
This is typical of how we
instantiate a class (assign an
instance to a named variable).

Attributes and Methods

• Attributes are essentially variables attached to a
class.

• Methods are essentially functions attached to a
class.

Attributes

• Attributes are essentially variables tied to an
instance of a class.

• Attribute names follow the instance name,
separated by a dot.

• In this example, all instances of the class Car have
the attribute color.

toyotaPrius.color = 'blue' ferrari.color = 'red' volkswagenBeetle.color = 'white'

Ways to set attributes

• Instantiate, then assign attributes

• Pass attributes as arguments at instantiation
• (need to know order of arguments)

• Pass attributes as key/value pairs at instantiation
• (order is not important)

myDuck = Duck()

myDuck.name = "Donald"

myDuck.company = "Disney"

myDuck = Duck("Donald", "Disney")

myDuck = Duck(name = "Donald", company = "Disney")

myOtherDuck = Duck(company = "Warner Brothers", name = "Daffy")

• Available options depend on the class definition.

• First Duck creation example

• Note that there are default attribute values.

• Notice that the printDuck() function does not
return anything. It just "does" something. So no
assignment is necessary.

• By associating the attributes with the instance,
when we pass the duck instance into the function,
all of the attributes go with it.

Try this…

• Second Duck creation example

• What's up with thirdDuck.company ? Use
printDuck(thirdDuck) to find out.

• Default attribute values are used if no argument.
Try printDuck(genericDuck)

Try this…

• Third Duck creation example

• Does thirdDuck.company get assigned
correctly here? Use printDuck(thirdDuck)
to find out.

Try this…

Methods

• Methods are essentially functions tied to a class.

• We can apply a method to any instance of the class
it's associated with.

• Method names follow the instance name,
separated by a dot, followed by parentheses.

• Like functions, methods may or may not return any
value.

toyotaPrius.drive('Nashville')

doesn't return a value.

newSpeed = toyotaPrius.accelerate(15)

returns a value.

• poetry.py example

• Notice:
• attributes printed in lines 39 and 41 are strings

.lines() method (line 44) returns a data structure
called a list (more on this next week)

.words() method (line 46) returns a list of words; the
len() function counts the number of items in the list

.abuse() method (line 50) doesn't return anything – it
modifies the poem instance itself.

• What happens if lines 49 and 50 are switched?

Try this…

GUI code from Latte Maker answer

• Note about tkinter crashing Anaconda
installations.

• tkinter objects are actual objects (buttons,
input boxes, etc.) on a form.

• Instances of the same class of object (e.g. Button)
have the attributes and methods that make sense
for that kind of object.

• Python dot notation can be confusing because
methods of instances like firstInputBox.get()
look similar to classes from modules like
ttk.Button(). That’s why capitalization is
important.

