
Python Lesson 4:
Lists and Loops

vanderbi.lt/py

Steve Baskauf

Lists

'apple'

'orange'

'banana'

'lemon'

'lime'

basket = ['apple', 'orange', 'banana', 'lemon', 'lime']

basket[2]basket[1:4]

basket[0]

refers to the value in
that position

creates a list containing
values in that range

Try this

Changing lists

'apple'

'tangerine'

'banana'

'lemon'

'lime'

basket = ['apple', 'orange', 'banana', 'lemon', 'lime']

basket.append('durian')
'durian'

basket[1] = 'tangerine'

Notice that built-in objects (like
lists) can have methods. This
.append() method does not
return a value – it does something.

Lists (more commands)

• Empty list can be created using

basket = []

• .remove() can be used to remove a particular
value from the list.

• del basket[3] can be used to remove an
item by position

Try this

Important: about copying lists

• As with user-defined objects, lists are complex
objects composed of other objects.

• As complex objects, assigning a list to another
variable creates a reference from the new variable
to the original one. It does NOT make a separate
copy.

• To actually make a copy of a list, use the
deepcopy() function from the copy module.

• Example given on web page.

Lists of lists

[3, 5, 7, 9]

[4, 11, -1, 5]

[-99, 0, 45, 0]

data = [[3, 5, 7, 9], [4, 11, -1, 5], [-99, 0, 45, 0]]

data[2]

data[0]

3

5

7

9

4

11

-1

5

-99

0

45

0

data[1]

data[0][2]

data[0][0]

data[1][1]

data[2][1]

data[2][3]

Lists of lists

[3, 5, 7, 9]

[4, 11, -1, 5]

[-99, 0, 45, 0]

data = [[3, 5, 7, 9], [4, 11, -1, 5], [-99, 0, 45, 0]]

data[2]

data[0]
3 5 7 9

4 11 -1 5

-99 0 45 0

data[1]

data[0][2]data[1][1]

data[2][1] data[2][3]

data[row][column]

You can think of this like:

where the indices refer to parts of a table.
A list of lists is similar to an array in other programming languages

Try this

String manipulations

• Special escaped characters: \n \t

• Unicode characters: \u20ac

• Substrings: myWord[3] myWord[2:5]
• (same issue as lists: one less than final index)

• Methods:
• .upper() myWord.upper()

• .split(',') mySentence.split(',')

• etc.

• Straightforward, try the examples on your own.

Iterating with for

'apple'

'orange'

'banana'

'lemon'

'lime'

for fruit in basket:

do this indented code block once for each fruit
then do this code block

basket

(iterable list)

value of fruit the first time

value of fruit the second time

value of fruit the third time

value of fruit the fourth time

value of fruit the fifth time

Try the example

basket = ['apple', 'orange', 'banana', 'lemon', 'lime']

for fruit in basket:

print('I ate one ' + fruit)

print("I'm full now!")

• The indented code block can have more than one
line.

• The upcoming code block is signaled by a colon (:)
just like if…then…else…

notice this colon

range() as an iterable

• The range iterates from the first number to one
step less than the second number:
• range(1, 11) iterates from 1 to 10

• A step is optional:
• range(2, 10, 2) iterates by twos from 2 to 8

• The step can be negative:
• range(10, 0, -1) iterates from 10 to 1

Using the value of the range

for number in range(1, 11):

theSquare = number**2

theArea = theSquare * 3.14159

print(number, '\t', theArea)

print("Those are the areas all the circles!")

• The value of the iterated variable can be used
anywhere in the indented code block.

• It's very common to use the length of a list as the
end of a range (see last example).
• This iterates through the whole list because counting is

zero-based.

Try this

About homework

• It's highly advisable to try to work through
Homework 2.

• We now have the tools available to actually solve a
real problem.

• If you can't figure out how to do it, carefully
examine each part (A, B, C) to understand how it
works.

• Bring questions next week if you don't understand.

