
Python Lesson 5:
Dictionaries and JSON

vanderbi.lt/py

Steve Baskauf

Dictionaries

'Disney'

'Disney'

'Warner Brothers'

'Hanna Barbera'

company = {'Mickey Mouse':'Disney', 'Donald Duck':'Disney', 'Daffy

Duck':'Warner Brothers', 'Fred Flintstone':'Hanna Barbera'}

company['Daffy Duck']

company['Mickey Mouse']
value

'Mickey Mouse'

Donald Duck'

Daffy Duck'

'Fred Flintstone'

key

key

• Dictionaries are an unordered data structure.

• They're defined using curly brackets: {}

• Values are identified by keys.

• We "look up" values in the dictionary using the keys.

try…except… for error trapping

try:

code that might throw an error goes here
except:

code to be executed if there's an error goes here
here's where the code execution continues

• Error trapping handles problems gracefully instead of
having the script crash.

• An error is called an exception.

• Code blocks are identified by indentation (as usual)

• Colons required after try and except

try…except… for error trapping
• Example:

try:

print('That character works for ' + company[characterName])

except:

print("I don't know who that character works for.")

print("That's all folks!")

• It's a good idea to error trap any error that can be
predicted to happen sometime (e.g. file not found)

Try this

• Note: the keys in a dictionary should be unique

• It is typical for keys to either:
• be some kind of identifier for a thing (this example)

• be some kind of characteristic of the thing (next example)

Lists of dictionaries

{'name':'Mickey Mouse',

'company':'Disney',

'gender': 'male'}

{'name':'WALL-E',

'company':'Pixar',

'gender': 'neutral'}

{'name':'Fiona',

'company':'DreamWorks',

'gender': 'female'}

characters = [{'name':'Mickey Mouse', 'company':'Disney', 'gender':

'male'}, {'name':'WALL-E', 'company':'Pixar', 'gender': 'neutral'},

{'name':'Fiona', 'company':'DreamWorks', 'gender': 'female'}]

characters[2]

characters[0]

'Mickey Mouse' 'Disney' 'male'

'WALL-E' 'Pixar' 'neutral'

'Fiona' 'DreamWorks' 'female'

characters[1]

data[row][key]

You can think of this like:

Since the keys aren't ordered, there is no significance to the
location of the columns.

'name': 'company': 'gender':

characters[0]['name']
characters[0]['gender']

characters[1]['company']

characters[2]['gender']

Lists of dictionaries (cont.)

• Lists are iterable. Dictionaries aren't (they are
unordered).

• It's common for each item on the list to represent
an individual of some category of thing and each
key:value pair in that individual's dictionary to
represent a property of that individual.

• Stepping through the list processes each individual.

Examples

What is JSON?
• A basic unit of JSON is a key:value pair. For example:
"name":"Steve" (strings must be in quotes)

"fingers":10 (numbers don't need quotes)

• A JSON object is a list of key:value pairs inside curly
brackets.
{"name":"Steve", "fingers":10,

"street":"Penny Lane"}

• Multiple values can be put in an array inside square
brackets.
["Steve","Steven","Esteban"]

Nesting in JSON

• Arrays can be nested inside objects

{

"name":

[

"Steve",

"Steven",

"Esteban"

],

"fingers":10,

"street":"Penny Lane"

}

• We use this when there are multiple options for a value

• In this example, the array holds multiple name values.

Whitespace

• Whitespace is not important – it can be used to
make the JSON structure clearer. The following
mean exactly the same thing:

{"name":["Steve","Steven","Esteban"], "fingers":10, "street":"Penny Lane"}

{"name":["Steve","Steven","Esteban"],

"fingers":10,

"street":"Penny Lane"}

{

"name":

[

"Steve",

"Steven",

"Esteban"

],

"fingers":10,

"street":"Penny Lane"

}

Nesting in JSON
• Objects can be nested inside arrays

[

{

"created_at":"Wed Sep 18 19:50:41 +0000 2019",

"text":"The \u201cdigital downloads\u201d tax makes an appearance!",

"lang":"en"

},

{

"created_at":"Wed Sep 18 19:28:44 +0000 2019",

"text":"I couldn't feel my fingertips this morning it was so cold!",

"lang":"en"

},

{

"created_at":"Wed Sep 18 14:08:54 +0000 2019",

"text":"RT @wnprwheelhouse: @wnprharriet giving shoutout to @wnpr !",

"lang":"en"

}

]

• Use this to assign properties and values to multiple items

• In this example, each item is a described tweet

Nesting in JSON

• Objects can be nested inside objects

{

"in_reply_to_screen_name": null,

"user":

{

"id": 6253282,

"id_str": "6253282",

"name": "Carmen Baskauf",

"screen_name": "cbaskauf",

"location": "Hartford, CT"

}

,

"geo": null,

"coordinates": null

}

• We use this when a value needs to be further
described using additional properties.

• In this example, the inner object describes the user

• The json.loads() function turns a JSON string into a
Python data object.

• Example: lists nested inside dictionaries

data = json.loads('''

{

"name":

[

"Steve",

"Steven",

"Esteban"

],

"fingers":10,

"street":"Penny Lane"

}

''')

>>> print(data['name'][1])

Steven

JSON converted to Python objects

• Example: dictionaries nested inside arrays

data = json.loads('''

[
{

"created_at":"Wed Sep 18 19:50:41 +0000 2019",

"text":"The \u201cdigital downloads\u201d tax makes an appearance!",

"lang":"en"

},
{

"created_at":"Wed Sep 18 19:28:44 +0000 2019",

"text":"¡No podía sentir las yemas de mis dedos esta mañana, hacía tanto
frío",

"lang":"es"

},
{

"created_at":"Wed Sep 18 14:08:54 +0000 2019",

"text":"RT @wnprwheelhouse: @wnprharriet кричать @wnpr !",

"lang":"ru"

}

]

''')

JSON converted to Python objects

>>> print(data[1]['lang'])

es

• Example: dictionaries nested inside dictionaries

data = json.loads('''

{

"in_reply_to_screen_name": null,

"user":

{

"id": 6253282,

"id_str": "6253282",

"name": "Carmen Baskauf",

"screen_name": "cbaskauf",

"location": "Hartford, CT"

}

,

"geo": null,

"coordinates": null

}

''')

JSON converted to Python objects

>>> print(data['user']['location'])

Hartford, CT

General pattern

• In complex JSON structures, inner structures can be
nested inside outer structures – potentially many
times.

• In a variable, we describe the path from outer to
inner structures through a series of square
brackets.

• If the next structure is a JSON array (Python list),
we use an index number.

• If the next structure is an JSON object (Python
dictionary), we use a key string.

Try this

