R Lesson 2: Objects and Data Structures

vanderbi.lt/r

Steve Baskauf

Preliminaries

DISC DIGITAL SCHOLARSHIP AND COMMUNICATIONS

Common types of data

- character, e.g. "Fred" or "!@#ts23" (in quotes)
- numeric, e.g. 15 or 6.02 (no quotes)
- logical, TRUE or FALSE (all caps, no quotes)

Object name recommendations

- Be descriptive (what the object is or does)
- snake_case (underscores) is commonly used:
 - ordinary_relational_processes
- camelCase is sometimes used:
 - bookList, alphabetizeParticipants
- We can use the term variable to refer to named objects
- R doesn't know what a name "means". A meaningful name helps human readers of the code.

Assigning a value to an object

- You can assign a value to an object using < (similar to a left arrow)
- Examples:

name <- "Steve" (creating a character object)
my_number <- 6.02 (creating a numeric object)</pre>

- Using the equals sign (=) is allowed, but not recommended.
- alt-minus is an RStudio shortcut to generate <-

"Printing" the value of an object

- R does not have a "print" command.
- entering the name of an object (or expression) in the console evaluates and displays its value

Functions

- A function defines a block of code.
- We pass arguments into functions: function_name(argument1, argument2, ...)
- argument parameter ode. ons: rument2, ...) returned

value

• Functions are usually named by what they do. Example:

my_latte <- make_latte(beans, milk, water)</pre>

- Functions can be:
 - built-in to R
 - defined by you in your code
 - defined by somebody else in a package

Using a function

- We don't have to know anything about the code that makes a function work. We just need to know:
 - What the function does
 - What arguments to put into it
 - What the function will output
- Examples:
 - sqrt(2) (evaluate and display)
 - x <- sqrt(3) (evaluate and assign to an object)

Vectors

DISC DIGITAL SCHOLARSHIP AND COMMUNICATIONS

Vectors are king in R

vector named animal

"frog"	"frog" "spider"		"bee"		
animal[1]	animal[2]	animal[3]	animal[4]		

- A vector is the most common kind of data structure in R.
- Vectors contain a sequence of the **same type** of data.

Creating vectors

• We commonly use the **construct** function to make vectors:

number_vector <- c(1, 3, 6, 10, 15)
animal <- c("frog", "spider", "worm", "bee")</pre>

- We can also generate a sequence of numbers: number_range <- 3:9 count_down <- 10:0 go_negative <- 5:-3
- The generated sequence is just another vector!
- (Python users: note the range includes the final value)

Knowing what's going on with a vector

- display it in console
- examine its value in the environment data pane
- examine its properties:

length(animal) (how many items)
mode(animal) (type of data in vector)

Referencing parts of vectors

• Referencing a **single item**:

animal[3] (displays the third item)
animal[2] <- "arachnid" (assigns "arachnid" to the 2nd item)

- Referencing a range of items (subvector):
 animal[2:4] (the range 2:4 is actually a vector itself)
- (Python users: R vectors are "1 based"; the first item is numbered 1, not 0. Also, the range includes the final value.)

Single item objects are vectors, too.

 Surprisingly, a single data item assigned to an object is also a vector. We can see this if we ask its length as if it were a vector:

an_item <- "some character string"
length(an_item)</pre>

• We can reference the single item using vector notation:

an_item[1]

Operations on vectors

- Many functions work equally well for a single item or a multi-item vector (since they are both vectors): number_vector <- c(1, 3, 6, 10, 15) sqrt(number_vector)
- When operations are performed on vectors, they generally are performed on all items in the vectors.

```
> a <- c(10, 30, 100)
> b <- c(5, 10, 20)
> c <- a/b
> c
[1] 2 3 5
```

More complicated things are also vectors

- A matrix is a vector that has been assigned two dimensions
- An array is a vector that has been assigned any number of dimensions
- As forms of vectors, matrices and arrays can only consist of one kind of data.
- Example:
- a_vector <- c(1.1, 1.2, 2.1, 2.2, 3.1, 3.2)
- a_matrix <- matrix(a_vector, 2, 3)</pre>

Missing data indicators

• R's built-in indicators for **missing data**:

NA ("not available") means there is a value, but it's missing; length =1

NULL means no value; length=0

vector_with_missing <- c(1, 2, NA, 3)</pre>

• NA will prevent some calculations. Example:

mean(vector_with_missing)

 NA can be used for missing data in tables instead of blank cells

Other important data structures

Lists

list named thing

name	fruitKind	euler	vectorData	curse "!@#\$%"		
value	"apple"	2.71828	animal			
reference value by position	thing[[1]]	thing[[2]]	thing[[3]]	thing[[4]]		
reference value by name	thing\$fruitKind	thing\$euler t	thing\$vectorDat	a thing\$curse		

- Like vectors, **lists** are one-dimensional data structures.
- However, lists can be heterogeneous (contain more than one kind of data object)
- It is typical to give names to values of a list.

Creating a list

- This list contains character strings, a number, and a vector.
- Values can be assigned names as they are added to the list

Viewing contents of a list

 You can see what's in a list by clicking on its name in the workspace summary in the Environment pane

Referencing list items

- List items can be referenced by:
 - position using double square brackets and the index number
 - thing[[2]]
 - name using a dollar sign and the name string
 thing\$curse

Clearing the contents of a pane

- Click on the little broom near the top of the pane
- The view in the pane will be cleared
- In the case of the Environment pane, the values will also be cleared.

Data frames

group

"a**/**inelid"

insect"

data frame named organismInfo column name

0

6

vector

organismInfo[4,3]

organismInfo[2,1]

organismInfo\$animal[4]

"worm"

"bęe"

- Data frames are essentially tables
- The column values are like vectors
- The set of columns is like a list

Making a data frame from vectors

First make the named vectors

group <- c("reptile", "arachnid", "annelid", "insect") # vector of strings

animal <- c("frog", "spider", "worm", "bee")</pre>

number_legs <- c(4,8,0,6) # vector of numbers</pre>

• Then put the vectors into a data frame

organism_info <- data.frame(group, animal, number_legs)

• The vector names will be used for the column names

Viewing contents of a data frame

)					RS	tudio								
0 - 0	s 🗠 🔹		🚔 🍌 Go to	ile/function	🔡 🕶 Add	lins 👻								Q	👂 Project: (None) 👻
🕘 orga	nism-exam	ple.R* ×	organismInfo	¢		_		Environ	nment	History	Connect	ions			-0
				Q,		👉 🔒	🗏 List 🖌 🕝								
-	group [‡]	animal 🗦	numberLegs	÷ 🔨				🛑 Glob	bal Envir	onment 👻				Q,	
1	reptile	frog		4			D	Data							
2	arachnid	spider		8				🖸 orga	nismIn	fo 🚽	4 obs.	of 3 varia	ables		
3	annelid	worm		0					Values						
4	insect	bee		6				animal chr [1:4] "fro					"spider" "wo	rm" "bee"	
-	mseet	bee		•				grou	ıр		chr [1:	4] "repti	le" "arachnid'	" "anneli	d" "insect"
									erLegs			4]4806		-	
click on the data frame name here															
							to see it displayed as a table here								
								Files	Plots	Packages	6 Help	Viewer			
									1 🗩 :	Zoom - 🊬	Export +	0			
Showing	1 to 4 of 4 (entries													

- Click on the name of the data frame in the Environment pane
- The contents will be displayed as a table

Referring to parts of a data frame

• Since the columns are like list items, we can refer to them by name:

organism_info\$animal

- Individual cells can be referenced by:
 - row and column

organism_info[2,1]

column name and position in column

organism_info\$animal[4]

Examining a data frame

- head() shows the first 6 rows
- tail () shows the last 6 rows
- names () returns the column names
- **str()** describes the structure of the data frame with information about each column

Loading data from files

Tabular data in delimited files

- Delimited files are text files where values are separated by some text character and lines are separated by newline characters (i.e. "hard returns").
- Most common type of delimited file: CSV (comma separated values)
- Also used: TSV (tab separated values)
- Delimited files are much simpler than Excel files and are commonly used for archiving data.
- CSV files can be made by exporting from Excel

Reading delimited files into data frames

- There are several ways to read data from CSV files into R:
 - by a file path (platform-dependent)
 my_data_frame <- read.csv("~/test.csv") (Mac)
 my_data_frame <- read.csv("c:\temp\test.csv") (Windows)
 - by a file-choosing dialog

my_data_frame <- read.csv(file.choose())</pre>

• by a URL

my_data_frame <read.csv("https://gist.githubusercontent.com/baskaufs/1a7
a995c1b25d6e88b45/raw/4bb17ccc5c1e62c27627833a4f25380f27d
30b35/t-test.csv")</pre>

Controlling the import process

- You can specify if the file has a header row (labels) using the header key (default value is TRUE)
- You can specify the separator if it's different from comma using the sep key (default value is comma)
- \t is the escaped value for a tab character
- Example:

Homework: Nashville schools data

- 1. What does R do when column headers have spaces in them?
- 2. Display the values in the zip code column
- 3. How many values are there in the zip code column?
- 4. Calculate the number of students in each school by adding the values in the male and female columns
- 5. Calculate the fraction of students that are white in each school
- 6. Calculate the average fraction of white students by school